Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death.
نویسندگان
چکیده
Proline metabolism has an underlying role in apoptotic signaling that influences tumorigenesis. Proline is oxidized to glutamate in the mitochondria, with the rate-limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53, leading to increased proline oxidation, reactive oxygen species formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and maintained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress, whereas knockdown of Δ(1)-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline-treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the forkhead transcription factor class O3a (FoxO3a). The role of PRODH in proline-mediated protection was validated in the prostate carcinoma cell line PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide-mediated cell death and that proline/PRODH helps activate Akt in cancer cells.
منابع مشابه
Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress.
Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against ...
متن کاملProline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.
The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different o...
متن کاملDehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants
Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radica...
متن کاملRole of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress.
Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-induci...
متن کاملProline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii.
The role of reactive oxygen species (ROS) in cell communication, control of gene expression, and oxygen sensing is well established. Inappropriate regulation of ROS levels can damage cells, resulting in a diseased state. In Colletotrichum trifolii, a fungal pathogen of alfalfa, the mutationally activated oncogenic fungal Ras (DARas) elevates levels of ROS, causing abnormal fungal growth and dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2012